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Abstract-This theoretical and numerical study investigates the natural convection flow within a fluid 
saturated porous medium enclosure subjected to intermittent heating from the side (hot wall). A theory 
for predicting the natural convection frequency of the flow wheel circulating inside the enclosure is 
developed from the general porous medium equations on a scaling basis. Physical insight indicates that 
heat flow resonance might occur when the input heat frequency matches the flow wheel circulating 
frequency. Numerical simulations confirm the existence of a preferred (resonance) input heat pulsating 
frequency. They also reveal that at the resonance frequency the fluid saturated porous medium system 
behaves as a dynamic thermal insulator in which the strong natural convection activity within the system, 
characterized by high amplitude heat flow oscillations, coexists with a damped oscillatory heat flux at the 

isothermal (cold) wall. 

1. INTRODUCTION 

ALTHOUGH most of the known phenomena in natural 
convection systems are induced by transient effects, 
only a small number of studies published in the 
archival literature considered transient boundary 
conditions. 

Systems with transient thermal boundary con- 
ditions differ from classical transient natural con- 
vection problems in which the transient relates to the 
fluid flow response to a single (instantaneous) change 
in thermal boundary conditions. An excellent review, 
with numerical and experimental results considering 
a clear fluid system (one with no porous matrix), was 
offered by Patterson and Armfield [l]. Considering a 
fluid saturated porous medium enclosure, the tran- 
sient heat transfer development caused by a step 
change in vertical wall temperatures was studied by 
Poulikakos and Bejan [2], assuming Darcy flow model 
(steady). The analysis was extended later on by Pou- 
likakos and Bejan 131, for higher Rayleigh numbers, 
with the addition of a quadratic drag term in the 
momentum equation. Another similar transient case, 
involving simultaneous heat and mass transfer, was 
studied by Gross et al. [4] assuming a step change in 
temperature and concentration boundary conditions 
of a vertical surface. 

It is worth noting that the steady flow model used 
in the porous medium studies cited in the previous 
paragraph is supported by Nield and Bejan [5] who 
indicated that in most practical situations the tran- 
sient flow inertia decay is very short and can be 
neglected. This is also verified by the theoretical analy- 
sis of transient natural convection within an enclosure 
with constant boundary conditions presented by Lage 

[6], where the time decay scale is shown to be pro- 
portional to the Darcy number divided by the porous 
modified Prandtl number. 

Natural convection problems with time dependent 
thermal boundary conditions have been studied only 
very recently and the analyses have been limited so 
far to clear fluid systems. A rectangular enclosure 
subjected to oscillatory (sinusoidal) temperature at 
one vertical wall was studied by Yang et al. [7] and 
by Kazmierczak and Chinoda [8]. Lage and Bejan [9] 
investigated the critical frequency for natural con- 
vection resonance in a fluid enclosure subjected to 
intermittent heat flux from the side. Mantle et al. [lo] 

reported experimental results for a shallow rec- 
tangular enclosure (aspect ratio 1 : 4) heated period- 
ically from the bottom and cooled at constant tem- 
perature from the top. Their results showed an 
increase of up to 12% in the heat transfer through 
the enclosure as compared with the steady state heat 
transfer. 

The present study investigates, theoretically and 
numerically, the time evolution of flow and tem- 
perature fields within a fluid saturated porous medium 
enclosure. The enclosure is heated periodically from 
one side wall with the opposite side wall maintained 
at a constant temperature and all other surfaces insu- 
lated. The focus here is on detecting natural con- 
vection resonance within the enclosure. The search for 
the resonant state is carried out by increasing the heat 
pulsating frequency and observing the time evolution 
of the surface averaged heat flux crossing the mid 
section of the enclosure (note that this heat flux is 
strongly related to the natural convection activity 
within the enclosure). The resonance frequency is 
defined as the frequency that leads to a local maximum 
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Darcv number, equation (7) 

NOMENCLATURE 

B 
dimensional and nondimensional 
frequencies, F = 1/(2Q) 
gravitational acceleration 
enclosure height 
iteration count index 
Forchheimer inertia coefficient, equation 

(X) 
enclosure length 
viscosity ratio, equation (6) 
thermal conductivity 
permeability 
Nusselt number, equations (lo), (11) 
dimensional and nondimensional 
pressures, equation (5) 
Prandtl number, equation (7) 

6 
E 

B 

isobaric coefficient of thermal 
compressibility 
velocity layer thickness scale 
dummy variable, equation ( 13) 
nondimensional temperature, equation 

(6) 
volumetric specific heat, equation (7) 
dynamic viscosity 
kinematic viscosity 
density 
nondimensional time, equation (6) 
local (i,j) volume 
porosity 
streamfunction 
nondimensional half period of heat 
pulsation. 

y”, Q” dimensional and nondimensional heat 
fluxes, equation (8) 

Subscripts 

Ra Rayleigh number, equation (8) 
C isothermal (cold) 

t time 
cr critical 

T temperature 
D porous modified 

Li, D horizontal and vertical seepage (Darcy) 
AT temperature difference based 

velocity components 
f 

fluid 

U, V nondimensional horizontal and vertical 
h hot 

velocity components, equation (5) 
m mid vertical plane 
M reference value 

x, J horizontal and vertical coordinates 
1, Y nondimensional horizontal and vertical 

max maximum value 

coordinates. equation (5) 
S porous medium (fluid and solid matrix) 

U’ nondimensional volume averaged 
ss steady state 

velocity, equation (21). 
V flow 

0 initial. 

Greek symbols 
61 thermal diffusivity, equation (7) 

Superscript 

( 1 surface averaged. 

surface averaged heat flux amplitude from the zero 
frequency amplitude limit. 

The numerical simulations cover a wide range of 
input heat frequency with Darcy number varying from 
IO-? to 10-h. The maximum Rayleigh number 
reported in each case is constrained by the CPU time 
necessary to obtain meaningful (accurate) results. 

Besides the fundamental theoretical aspect of this 
work, numerous engineering applications involving 
fluid saturated porous medium warrant its pursuit, for 
instance in the areas of: building insulation and fire 
protection techniques fl 1,121, phase change processes 
[ 13, 141. hazardous thermo-chemical spreading [ 151, 
and advanced energy systems for space application 
116, 17j. 

2. FORMULATION OF THE PROBLEM 

The physical model of the problem discussed in this 
study is synthesized in Fig. 1, where a rectangular 
porous matrix enclosure saturated with fluid is 

depicted (top). The nondimensional time dependent 
general conservation of mass, momentum and energy 
equations for a porous medium [18, 191, written in 
Cartesian coordinates, are 

au 
3F+ 

c?V 
7y= 0 (1) 

DU (7P 
_=-- 
DT 

ax+qS’rJV’U 

--@;(a’+ V2)rW-g’% u (2) 

Pr 
-#“- Vf#‘Ra PrO (3) 

Da 

(4) 
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FIG. 1. Rectangular fluid saturated porous medium enclosure 
with boundary and initial conditions. 

In writing equations (l)-(4) it is implicitly assumed 
that the porous matrix is saturated with a Newtonian 
fluid with constant properties. The Oberbeck- 
Boussinesq approximation is applied, with fluid and 
porous matrix being in thermal equilibrium. The term 
D()/Dz of equations (2) and (3) represents the total 
derivative, a( )/& + ZJ a( )/ax+ V a( )/a Y. Nondimen- 
sional variables, with corresponding dimensional 
quantities listed in the Nomenclature, are 

(X, Y) = y (U, V) = !25$ 
s 

T- T,, 
$=- 

t - 1% 

q;llHlk 
z== J=; (6) 

Parameter J, equation (6) accounts for the effective 
viscosity of the fluid saturated porous medium [20]. 
The expression for the inertia parameter, Z, shown in 
equation (8) is obtained by invoking the Ergun [21] 
model. The porous modified heat flux based Rayleigh 
number, RaD, is defined as equal to the product RaDa. 

Observe that the Rayleigh number defined in equa- 
tion (8) is based on a reference value of the pulsating 
heat flux, q$. The instantaneous time dependent 
Rayleigh number is then equal to RaQ”. 

The inertia time dependent term kept in both 
momentum equations (2) and (3), as mentioned pre- 
viously, is negligible in most practical situations pro- 
vided the Darcy number is small. Through scale analy- 
sis [6], it is possible to show that the transient decay 
time is proportional to Da/(~2Pr) for Darcy flow, and 
Da3’4/(43’2Ra,Pr) ‘/’ for Forchheimer flow. It follows 
that for high Darcy number values, as considered 
in the present study, the transient flow inertia terms 
should not be neglected, a priori. 

The porous medium enclosure is saturated initially 
with motionless and isothermal fluid. During the 
entire thermal process, the left wall of the enclosure 
is maintained at a constant temperature, BC, equal to 
the initial fluid saturated porous medium temperature, 
B0 = 0 (Fig. 1). A constant heat flux, Q” = 1, is then 
imposed at the right wall. The first phase of the ther- 
mal process refers to the heating of the enclosed 
quiescent fluid until a steady convection regime is 
attained. At r = 0 (note that the nondimensional time, 
equation (6) is zero when the system reaches steady 
state, t = t,,), the system undergoes a second phase 
during which the input heat flux pulsates in time 
around its reference value. 

Here, the heat pulsation half-amplitude is kept at 
20% of the reference value. Equal heating and cooling 
periods are assumed, n,, = f& = CI, so the non- 
dimensional heat pulsating frequency is : F = l/(2$2). 
According to the definition of dimensionless time, 
equation (6) the dimensional heating and cooling 
periods are, respectively : (th, t,) = (Cl,,, Q)$H ‘/a,. 

Three parameters are chosen to help understand 
the thermal convective effect of pulsating heat, respec- 
tively : right (heating) wall instantaneous surface aver- 
aged temperature, L?,, ; instantaneous surface averaged 
left (isothermal) wall heat flux, &‘; and instantaneous 
surface averaged heat transfer rate through an imagin- 
ary vertical plane positioned at the middle of the 
enclosure, &,,. The corresponding nondimensional 
quantities are 

(9) 

-,I 

Nu, = 2 = (10) 

Nu, = y = 5’ [(RaPr)li’UO- g] _ dY. 
0 X- 1,2 

It is worth noting that a temperature based Rayleigh 
number can be defined and written as 

RaA, = sB(i’h - KW3 
VU, 

= &Ra. (12) 

3. NUMERICAL METHOD 

Numerical simulations are performed by solving 
the system of time dependent differential equations 
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(l)-(4), with appropriate boundary and initial con- 
ditions, using the finite volume method [22]. This 
method was previously applied and validated for simi- 
lar problems (e.g. refs. [S, 9, 233). The discretized 
equations are solved using the SIMPLE algorithm 
[22] with implicit alternating-direction Gauss-Seidel 
iterative method, and the efficient Tri-Diagonal- 
Matrix Thomas algorithm. The present numerical 
code is validated also against results reported by Arm- 
field and Patterson [24]. 

Extensive grid accuracy tests are performed, fol- 
lowing the same basic concepts described in detail by 
Manole and Lage [25]. Several different grid dis- 
tributions are implemented, depending on the case, 
using 60 by 60 grid lines. Numerical results reported 
here are at least 5% accurate considering a 50% 
increase in the total number of grid lines. 

Numerical convergence is examined locally follow- 
ing the criterion 

< lo-” (13) 

where E is replaced by U, I’, and 0 at every (X, I’) 
location of the discretized domain, and i and i+ 1 are 
two consecutive iterations at the same time z. 

Time step selection follows the same procedure 
detailed by Lage and Bejan [9]. Here, the minimum 
number of iterations per cycle was conservatively set 
at 400 with results being insensitive to any further 
decrease in time step. 

4. THEORETICAL ANALYSIS 

The parameter space of the present probiem is con- 
siderably large. Even considering a specific case, fixing 
all parameters but the heat pulsating frequency, the 
probability of choosing an input heat frequency near 
the resonance frequency is very small. In this section, 
a theory based on scale analysis is developed to obtain 
an estimate for the input heat pulsating frequency that 
leads to natural convection resonance. The result of 
this simple but powerful analysis is fundamental to 
limit the frequency range for determining numerically 
the precise resonance frequency value. 

As mentioned before, resonance is expected to be 
induced when the heat pulsating frequency, $ 
coincides with the frequency of the flow wheel cir- 
culating within the enclosure,,f;, 

h = “f: (14) 

Equation (14) is a mathematical representation of a 
continuous thermal charging process. Consider a fluid 
pack circulating within the enclosure with a certain 
frequency such that when it gets close to the heating 
wall, at every cycle, the heat flux is at the same strength 
(e.g. heating). For that to happen, it is necessary that 
the circulating fluid pack and pulsating heat have the 
same frequency. 

If the energy absorbed by the fluid pack from the 
heating wall is completely delivered to the isothermal 

wall, the system will operate as a continuous heat 
transmitter with isothermal wall heat flux wave fol- 
lowing the heating wall heat flux wave with similar 
amplitude and a phase shift (due to the system’s ther- 
mal inertia). Otherwise, the energy will accumulate 
inside the circulating fluid pack, increasing its tem- 
perature and creating conditions for heat convection 
resonance due to the pulsating nature of the heat 
input. The energy accumula~d by the fluid pack might 
eventually be returned to the heating wall during its 
cooling period. In this case the system will operate as 
a dynamic thermal insulator in which the heat oscil- 
lation at the heating wall is not felt by the isothermal 
wall (obviously during the periodic steady regime the 
cycle averaged heat flux at the heating wall matches 
the cycle averaged heat flux at the isothermal wall). 

Furthermore, it is reasonable to expect that higher 
fluid velocities inside the enclosure (high Ra) improve 
the conditions for resonance : the fluid pack carrying 
high energy would have less time to deliver this energy 
to the isothermal wall as compared with another cir- 
culating fluid pack Aowing synchronously with the 
cooling period of the input heat pulse (this fluid pack 
will tend to flow slower). 

The task now is to obtain a proper representation 
for the flow wheel frequency,f,. In dimensional form, 
the circulating frequency scale is obtained by dividing 
the fluid velocity scale by the enclosure perimeter 
(scaled distance traveled by a fluid pack per cycle 
within the enclosure) 

&-A. 
2(H+ L) 

(15) 

For a square cavity, as considered in here, L = H, so 
the flow frequency written in nondimensional form 
becomes 

F ,E 
Y 4 I 

The velocity scale, V, is obtained by first cross differ- 
entiating the steady version of the general momentum 
equations (2) and (3) to eliminate pressure. The 
result, in a scale form, is 

+ lp’Pr 
x V+C$~ Ra Pr 0. (17) 

The quadratic equation in If, equation (17), can be 
solved directly. After some manipulation (see Lage 
[26] for details) the scale for V is obtained as 

-II+ 
i 

I12+48@Ra Pr 

x I +q?.rPrA(Pr)+ qggy2 
( 

o.143#‘!2 
1+QiJPrA(Pr)+-5F (18) 
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where A(Pr) is equal to 1 for Pr 2 1, or to Pr- ’ for 
Pr < 1, and II = 4*Pr/Da. Notice that here the tem- 
perature inside the enclosure, 6, scales with the 
unknown o,, value (recall 6, is zero). However, it is 
possible to obtain an approximate scale for 8, con- 
sidering the simple Darcy regime or the Forchheimer- 
extended Darcy regime [5, 91. The latter is chosen 
here since thermal resonance is a phenomenon related 
with high Rayleigh number flow, so 

1 

Oh * (Ra Da)“’ ’ (1% 

Replacing (3 in equation (18) with &, equation (19), 
and substituting the result in equation (16) results in 

1+4JPrA(Pr)+ r f-” - 
(20) 

It is worth noting that equation (20) provides us with 
one unique expression for F,, valid within the entire 

- Nut Q” - Num 
IF=101 

0 0.2 0.4 0.6 t 0.R 

NU /F = 33.31 
^ 

0 0.06 0.12 O.IR 
z 

0.24 

range covered by the general momentum equations. 
This result extends the theoretical analysis performed 
by Lage and Bejan [9] who considered two simpler 
cases, namely Darcy and Forchheimer-extended 
Darcy flows, separately. Equation (20) also matches 
the result for clear fluid system [9] by simply dropping 
the terms related to the porous medium model. 

5. RESULTS AND DISCUSSIONS 

Numerical results are obtained considering a fluid 
saturated porous medium with 4 = 0.4, I = 0.4, 
Pr = 7, and J = 1. The time evolution of thermal par- 
ameters is presented in Figs. 2 and 3. In each figure, 
the middle graph refers to the input heat resonance 
frequency. 

Figures 2(a) and (b) are for Da = lo-*. In Fig. 
2(a), for Ru = 106, three cases with increasing heat 
pulsating frequency from top to bottom are depicted. 
Evidently, the heat transfer mechanism inside the 
enclosure varies as the heat frequency increases. The 
top graph, for F = 10, shows the isothermal wall non- 
dimensional heat flux, Nu,, trailing the non- 
dimensional mid-plane heat flow, Nu,, with a phase 
shift. The phase shift, caused by the flow wheel inertia, 
is even more evident on the middle graph for F = 33.3. 

Furthermore, as the frequency increases from 10 to 

-Nu Q” -Nu 
c m 

Nu 
1.2 

1.0 

0.R 0.07 

0.06 - 
oh 

0.05 
0 0.04 O.OR 0.12 r 0.16 

Nu 
1.2 

0.06 - 
oh 

0.05 

0 0.02 0.04 0.06 
7 

O.OR 0 O.CW 0.008 0.012 
T 

0.016 

(a) lb) 

FIG. 2. Time evolution of thermal parameters for three input heat frequencies (middle graph is for resonance 
frequency), and Da = lo-*. (a) Ra = 106; (b) Ra = 10”. 
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FIG. 3. Time evolution of thermal parameters for three input heat frequencies (middle graph is for resonance 
frequency), and Da = 10-4. (a) Ra = 10”; (b) Ra = 10”. 

33.3, the isothermal wall heat flux amplitude is 
reduced more abruptly than the mid-plane heat flux 
indicating a decrease in the energy being delivered by 

the hot fluid stream (flowing synchronously with the 
heating phase of the heating wall) to the isothermal 
wall, a situation favorable to resonance. A further 
increase in frequency (lower graph F = 100) indicates 
a reduction in both isothermal wall and mid-plane 
heat flux amplitudes. This heating frequency is too 
high for the system to react. 

In Fig. 2(b), for Ra = lo*, the system responds to 
an increase in heat pulsating frequency in a similar 
fashion. However, the middle graph, for F = 294. 
clearly indicates stronger flow resonance within the 
enclosure (notice Nu, amplitude higher than Q” 
amplitude). Although in this case the amplitude of the 
isothermal wall heat flux is also reduced (NM, flattens) 
as F increases, the Nu, amplitude value clearly 

increases and decreases as F goes from 50 to 294 and 
from 294 to 500, respectively. An interesting detail, 
not so evident in Fig. 2(a), is the abnormal behavior 
of Nu, for low frequency, F = 50. The heat flow cross- 
ing the mid plane of the enclosure oscillates within 
each heating period. This oscillation is related to the 
natural frequency of the convective flow within the 
porous medium enclosure. 

Figures 3(a) and (b) for Da = lo- ‘, and, respec- 
tively, Ra = 10” and 10”. indicate the same essentials 
as Figs. 2(a) and (b). Notice, however, the higher 
frequencies and the almost square shape of the surface 
averaged heating wall temperature. The resonance at 
F = lo4 (Fig. 3(b)) is not as pronounced as the one 

obtained for Da = lo- ‘, Ra = lo8 and F = 294 (Fig. 
2(b)). This results from the damping imposed by the 

less permeable porous matrix (lower Da). 
A summary of the numerical exercise performed to 

detect resonance is presented in Fig. 4, for Da = lo- ’ 
(top) and lO-4 (bottom) and several Rayleigh 

0.6 - 

Nu rtl.nla". : 

FIG. 4. Maximum amplitude of mid plane heat flow vs input 
heat pulsating frequency. Top : Da = 10-l; bottom : 

Da = lo-‘! 
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numbers. Plotted in the ordinate is the maximum 
amplitude of the oscillatory mid plane Nusselt 

number, Nu,.,,,, during one heating cycle after peri- 
odic steady regime is achieved. Notice that for the 
low frequency range (F < 20, top graph) Nu,,,,, 
values move upward tending to the steady state value 
equal to 0.4 (exact for F + 0). As frequency increases, 

N%,,,X decreases up to a certain value beyond which 
the resonance effect sets in forcing its value to increase. 
Evidently, as F increases further on (F + co) the sys- 
tem response dies out as indicated by Nu,,,,, value 
tending to zero in all cases. 

Common to both graphs in Fig. 4 is the appearance 
of additional Nu,.,,, peaks, with the curve for one 
specific Rayleigh number following the shape of the 
lower Rayleigh number curves. This indicates the exis- 
tence of more than one resonance mode for high Ray- 
leigh numbers. Note that as Darcy number is reduced 
the system becomes less susceptible to resonance, as 
indicated by the higher Ra,, (bottom graph) needed 
to achieve approximately the same Nu,,,,, resonance 
amplitude of the top graph. Reducing the Darcy num- 
ber further to 10m6 results in no resonance at all, with 

Nu,.,,, curves indicating a monotonic decrease as 
frequency increases, for Ra as large as 10”. 

Results shown in Fig. 4 are for situations when a 
periodic steady regime is attained. The number of 
necessary cycles needed for achieving this regime 
depends on the case. Figure 5 presents phase-plane 
portrayed for each of the three cases depicted in Fig. 
2(b). These figures show the evolution of the con- 
vection flow towards a periodic steady regime within 
the enclosure. The nondimensional volume averaged 
velocity within the computational domain, defined as 

IV= 1 SJU(i,j)‘+ V(i,j)‘)‘/* (21) 
i.j 

is plotted vs the surface. averaged heating wall tem- 
perature. In Fig. 5, the arrows indicate the starting 
point of the heat pulsating process. Notice that the 
middle graph presents the largest area within the W 
vs 8, curve (largest W range), a fact consistent with 
the resonance phenomenon. Also, the wiggles shown 
in the top graph (8,, extremes) indicate the oscillatory 
process within each cycle, the same phenomenon 
already discussed in connection with Fig. 2(b). 

Table 1 presents a comparison between numerical 
and theoretical (predicted) resonance frequencies 
from equation (20). As expected, the theoretical 
values are off by a factor of order 1, being consistently 
smaller. Theoretical resonance frequency values for 

w b6 
cm’) 

62 

5.5 6.0 6.5 

w 66 
(xIo-‘l 

62 

6.” 6.5 7.0 

FIG. 5. Average velocity vs average heating wall temperature 
forDa= IO-‘and&= 108.Top:F=50;middle:F=296 

(resonance) ; bottom : F = 500. 

Da = 10m6 are included for reference only since, as 
indicated in the table, no resonance was observed in 
the numerical simulations. 

Finally, Figs. 6(a) and (b) and 7(a) and (b), present 
streamlines and isotherms, respectively, for Ra = lOa. 
Da = lo-‘, F= 294, and Ra = lo”, Da = 10m4. 
F = 104. In both cases, the natural convection flow 
evolves from picture 1 (start heating) to 6 (start 
cooling) in a steady periodic fashion. For each case, 
the complete sequence of streamline pictures is pre- 
pared using the same streamfunction maximum and 
minimum values (streamfunction defined, as usual, as 
U = aY/LJY and V = -aY/Xt’). So in Fig. 6(a) for 
instance, it is possible to observe the strengthening of 
the flow during the heating phase by following the 
sequence l-6 (notice the increase in the number of 
streamlines from 6, in picture 1, to 8, in picture 6) and 
the weakening of the flow during the cooling phase, 
sequence 6-l. The same can be observed in Fig. 7(a). 
From both Figs. 6(a) and 7(a), it is possible to con- 
clude that the scale used for the distance travelled by 
a fluid pack circulating within the enclosure represents 

Table 1. Comparison between numerical and theoretical resonance frequencies (4 = 0.4, 
I = 0.4, J = 1, Pr = 7) 

Da 

Ra 

Numerical 
Theoretical 

lo-* 1o-4 lo-6 

lo6 10’ lo8 1O’O 10” lo’* lOI 1O’j 

33 114 294 1219 4000 10000 - - 
18.3 47.6 121.4 699.4 1820.1 4636.7 2207.8 6309.8 
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streamlines 

(a) 

FIG. 6. Isolines from numerical simulations for Da = IO-‘. Ra = lob. and F= 294. (a) Streamlines; 
(b) isotherms. 



A dynamic thermal insulation 779 

isotherms 

(b) 

FIG. 6.-Continued. 
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streamlines 

(a) 

FIG. 7. Isolines from numerical simulations for Da = 10m4, Ra = lo”, and F= 104. (a) Streamlines: 
(b) isotherms. 
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c - 

isotherms 

f I 
r I 

(b) 

FlG. 7.-Continued. 
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an upper bound value. This might explain why the 
theoretical resonance frequency, equation (20), is con- 
sistently smaller than the one obtained numerically 
(Table 1). Interesting, and somewhat unexpectedly, 

Figs. 6(b) and 7(b) show very small changes in the 
isotherm distributions, with the core of the enclosure 

maintained stratified throughout the thermal process. 

6. CONCLUSIONS 

A general theoretical equation for predicting natu- 

ral convection resonance frequency, developed on a 
scale basis, is proven essential to limit the exploratory 
frequency range for numerical simulations. 

The natural convection resonance predicted phys- 

ically is detected numerically by monitoring the ampli- 
tude of the enclosure mid plane heat flow. It is observed 

that at the resonance frequency the fluid saturated 
porous medium system works most efficiently as a 
dynamic thermal insulator, when strong natural con- 
vection activity within the system, characterized by 
high amplitude heat flow oscillations, coexists with a 
damped oscillatory heat flux at the isothermal (cold) 

wall. 
Numerical results also support the hypothesis of 

resonance being more evident at high Rayleigh num- 
ber (high velocities), with the minimum Ra value for 
resonance increasing as Da decreases. Furthermore, 
the present numerical simulations do not detect any 

resonance for small Darcy number, Da = IO- ', even 
for Ra as large as 10t3. It is believed that at this small 
Darcy number, the damping introduced by the low 
permeability porous material inhibits the convection 
resonance phenomenon. Finally, the natural flow fre- 
quency (for a set of Da and Ra) can be detected 

numerically by simulating a case with very low input 
heat frequency. 

Although not investigated here, the present physical 
reasoning indicates that increasing the heat pulsating 
amplitude might lead to resonance even for some of 
the small reference heat transfer based Rayleigh num- 

bers used in here. This open question shall be answered 
in a future study. 
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